Cell biology

Assessment - Life on Mars

Mars Exploration Rovers: This special-effects image combines a model of the Mars rover Opportunity and 46 photogrpahs that Opportunity took of "Burns cliffs" near the edge of "Endurance Crater". Image courtesy of NASA/JPL-Caltech/Cornell.Mars Exploration Rovers: This special-effects image combines a model of the Mars rover Opportunity and 46 photogrpahs that Opportunity took of "Burns cliffs" near the edge of "Endurance Crater". Image courtesy of NASA/JPL-Caltech/Cornell.

Summary
In the summer of 2003, NASA’s Jet Propulsion Laboratory launched two Mars Exploration Rovers - Spirit and Opportunity - towards Mars. They landed on January 3rd and 4th, 2004. Their primary scientific goal was to study the geology of Mars and search for signs of water. Although they were expected to last only 3 months, they have been vigorously sending back data for over 2 years and are still going strong! In this activity, students receive simulated Martian soils and are given the task of designing 3 tests to determine whether the soil sample contains something alive or something that was once alive. They may use any of the tools from the previous lessons – agar plates, tests for organic molecules, microscopes, or something of their own design. This assignment allows students an opportunity to demonstrate what they have learned throughout the unit, both about scientific experimentation and about the special characteristics of living things.

Objectives
Can describe the necessary characteristics of life.
Can categorize objects as alive or not alive using self-generated data.
Can demonstrate that all living things will grow and reproduce when provided with the proper nutrients and environmental conditions.
Can demonstrate that living things are made of organic molecules.
Can test for the presence of protein, glucose and starch.
Can design an experiment.
Can make observations and keep track of data over several days.
Can interpret the results of an experiment.

Vocabulary
Characteristic
Agar
Nutrients
Yeast
Organic molecule
Protein
Biuret solution
Carbohydrates
Glucose
Benedict’s solution
Starch
Iodine
Microscope


3. Testing for Life's Molecules

Summary
All known life is made out of a small group of chemical compounds called organic molecules. Common organic molecules include proteins, glucose, starch, lipids, and nucleic acids. This lesson plan asks students to conduct tests for proteins, glucose, and starch. At the beginning of the activity, they choose 3 items to test: one known to be “never alive”, one known to be “once was alive”, and one mystery item. In addition, each station includes a positive control. By the end of the experiment, students should be familiar with some of the major organic molecules and should recognize that living things, and substances derived from them, are made of organic molecules. In addition, this is a chance to bring in topic surrounding nutrition, health, and digestion. Since our bodies are made up of organic molecules, we need each of these molecules as nutrients in our food.


2. Life Traps

Summary
Life trapsLife trapsAs part of recognizing the characteristics of life that all organisms share, students grow microbes on nutrient agar plates. Students swipe surfaces with a sterile Q tip swab and seed plates resulting in a wide range of colorful and prolific bacteria and fungi colonies. Other plates may be simply opened to the air to catch life floating in the air. Through these experiences, students learn that all living things, even those so small and invisible as to be floating in the air, grow and reproduce when provided with the proper nutrients and water. Teachable moments abound since the “dirtiest places”, like the toilet rim, often result in the least bacterial growth while presumably “clean” places, like the surface of your skin, have the most. A fun extension of this activity (see the Going Further section) is to start a sourdough culture from wild yeast in the air and make sourdough bread.


1. Is it alive?

Summary
What does it mean to be alive? Is a cactus alive? Is a seed alive? Is the air we breathe alive? What are the necessary characteristics? To hook students into the question, they are introduced to “glue monsters” (sometimes known as “scooting glue”) and the class discusses whether the “monsters” are alive or not. Next, students are given cards with the names of various objects and asked to sort them into categories: alive, once was alive, never alive, and not sure. Finally, students create a list defining the characteristics of life – a set of characteristics that all living things share. The list is initially developed in pairs, then in larger groups of 4, and ultimately as a whole class. The final list is turned into a poster that can be referenced and modified throughout the remainder of the unit as students learn more about what it takes to be alive.


Physiology Box

Physiology is the study of living things – their structure, organization, and biochemistry. This unit gives students an opportunity to discover the fundamental characteristics of living things and explore some basic cell biology. Students begin with several activities culminating in the creation of a list of characteristics that all living things have in common – the characteristics of life list. From here, students learn to test for signs of life by growing microbes on agar plates, conducting biochemical tests, visualizing cells, and experimenting with photosynthesis and respiration. Finally, students learn about the organization plants and animals through dissection and the raising of plants and fish in the classroom. Throughout the unit, students return to the characteristics of life list, refining and revising their list as they learn new concepts. A planning guide for a voyage with the Marine Science Institute is included as a way for students to learn about the many forms of life in the San Francisco Bay.


3. DNA Extraction

Strawberry DNA: The cloudy substance in the upper layer is strawberry DNA.Strawberry DNA: The cloudy substance in the upper layer is strawberry DNA.Summary
What is DNA? What does it look like? In this activity, students extract DNA from strawberries using diluted dish soap and alcohol. Suddenly this mysterious secret of life can be seen materializing out of strawberry juice right in front of students’ eyes. The long tangled DNA strands that ultimately form may be collected using a bamboo skewer or glass stirring rod. The DNA may even be saved in a necklace made from an eppendrof tube, alcohol and string.


4. Pond Water

Summary

Delve into a micro-habitat that is the size of a drop of water. This lesson allows students to explore the plankton (organisms that drift with the currents) that exist in a drop of pond, lake, or bay water. A microscope is required to view most organisms although some are observable with a hand lens. If possible, this is a fantastic opportunity for students to collect the pond water themselves using pantyhose and a small bottle. If you are pursuing a restoration project, collecting water might be an excellent excuse for an initial visit (as long as the creek/body of water has regions of relative calm where algae can grow on the rocks). Plans for both an initial creek visit activity and a classroom investigation of the water sample are included in this lesson plan. If it is not possible to bring students to the creek or pond, then you can collect the sample ahead of time and skip the creek visit and sense of place activity.