Organic chemistry and biochemistry

6. Cell Energy - Bubbling Yeast

Summary
Bubbling Yeast: Thanks to Ellen Loehman for creating this image.Bubbling Yeast: Thanks to Ellen Loehman for creating this image.Yeast are a single celled fungi that are a great model organism for studying respiration in the classroom. The species Saccharomyces cerevisiae is commonly used for leavening bread and fermenting beer but other species such as Candida albicans are known to cause infections in humans (vaginal yeast infections and diaper rash being the most common). In this investigation, students fill the bulb of a disposable pipet (eyedropper) with yeast, then submerge the pipet in a test tube of water. They can then measure the rate of respiration by counting the number of bubbles of carbon dioxide gas that emerge from the tip of the pipet in a certain length of time. By varying the temperature and the nutrient source, students can discover what variables affect the rate of respiration in yeast. By submerging the pipet in bromthymol blue (see Colorful Respiration activity), students can identify the gas being produced as carbon dioxide.

6. Cell Energy - Colorful Respiration

Summary
Blow through a straw into bluish liquid and watch it turn green then yellow before your eyes. Put some plants into the yellow liquid, leave it in a sunny window, come back the next day and the liquid is green. What if you leave the plants in the dark? What if you put some pond snails in? What if you put both pond snails and plants? What’s going on?

The liquid is bromthymol blue (BTB) a non-toxic acid-base indicator that can be used to indirectly measure levels of dissolved carbon dioxide (CO2). The amount of CO2 in a solution changes the pH. An increase in CO2 makes a solution more acidic (the pH gets lower). A decrease in CO2 makes a solution more basic (the pH gets higher). The reason for this is that carbon dioxide that is dissolved in water is in equilibrium with carbonic acid (H2CO3).

CO2 + H2O ↔ H2CO3

In any solution, while the majority of CO2 stays as CO2, some of it is converted to H2CO3, turning the solution slightly acidic. If CO2 is added to the water, the level of H2CO3 will rise and the solution will become more acidic. If CO2 is removed from the water, the amount of H2CO3 falls and the solution becomes more basic. Thus, acid-base indicators such as BTB can indirectly measure the amount of CO2 in a solution.

For more than you ever wanted to know about carbonic acid, see the Wikipedia article on carbonic acid. For the example lesson plans developed by Bob Culler through Access Excellence at the National Health Museum. For a great time lapse video showing BTB color changes using elodea and snails, see Activity C13 from Addison-Wesley’s Science 10 curriculum.

Materials

  • Bromthymol blue (BTB can be ordered from any science supply company such as Flinn Scientific $9 for 1 liter 0.04% BTB solution).
  • Several 2 liter soda bottles
  • Test tubes
  • 500 ml beakers or disposable plastic or paper cups
  • Water (since the pH of tap water varies, you may wish to use distilled water for your master BTB solution)
  • Drinking straws
  • Plastic wrap
  • Elodea
  • Pond snails

Procedure

  1. Before the lesson, the teacher should mix a master BTB solution in one or more 2 liter soda bottles. For each 2 liter bottle, mix 120 ml 0.04% BTB with 1800 ml water. The end result should be a medium blue master BTB solution, dilute enough to be safe for plants and snails but dark enough to see the color changes.
  2. Pour 200 ml diluted BTB in a beaker or cup.
  3. Take a deep breath then blow bubbles in the BTB solution through a drinking straw. What happened? Why?
  4. Set up a test tube rack with 3 tubes. In tube #1 put unbubbled BTB solution (blue). In tube #2 put bubbled BTB solution (yellow). Tubes #1 and #2 will be your comparison tubes. In tube #3 you have a choice of what to do. Choose one option from each of the following columns:
    BTB solution Living things
    Light conditions
    bubbled BTB (yellow) spring of Elodea Sunny window/bright light
    unbubbled BTB (blue) 5 pond snails Dark closet/drak heavy cloth
    both Elodea and 5 pond snails  
  5. Make a hypothesis about what will happen to your tube.
  6. After 24 hours, check the color of your tube. What happened? Why?

Going Further

6. Cell Energy - Photosynthesis in a Jar

Summary
These experiments use a bell jar (or any other very large, clear, glass jar) to determine the identity of the gas produced by plants. It mirrors the famous experiments of Joseph Priestley and Jan Ingenhousz from the 1700’s that first demonstrated the existence of oxygen and its importance to plants and animals.

In 1771 and 1772, Priestly conducted a series of experiments using a bell jar. It was known that a candle placed in a sealed bell jar would eventually burn out and could not be relighted while still in the jar. Priestly discovered that a plant can survive indefinitely within a jar. Thus, he tried placing a plant into the jar with the burning candle. The candle went out as before and could not be relit right away. Priestly waited several days and tried again. The candle could be relit! The plant had restored the air inside the jar! (Do not try the next series of experiments since it harms animals!) Next priestly investigated what would happen to animals. He found that a mouse placed inside a sealed jar will eventually collapse. However, a mouse can survive in a sealed jar with a plant since the plant restores the air. Priestly was the first to demonstrate that oxygen is necessary for fire and animals but that given time, plants can create oxygen, allowing fires to burn and animals to breathe.

6. Cell Energy - Bubbling Plants

Elodea nuttallii: Image courtesy of Christopher Fischer.Elodea nuttallii: Image courtesy of Christopher Fischer.Summary
Students often believe that only animals “breathe”, but all things exchange gases with their environment. It’s just that the process is not so obvious in plants. Elodea is a very common water plant that can be found in aquarium stores. As photosynthesis occurs, oxygen is produced as a by-product. Elodea releases bubbles of oxygen as it photosynthesizes. In fact, the number or volume of bubbles in a certain amount of time can be used as a rough measure of photosynthetic rate.

6. Cell Energy (photosynthesis and respiration)

Summary
Here you will find a toolbox full of inquiry investigations on photosynthesis and respiration. Rather than the detailed lesson plans provided elsewhere at My Science Box, each experiment only contains a short background, materials, procedure, and going further section. It is up to you to decide which of the many experiments you wish to try with your students and how to sequence them. You will find everything from descriptions for how to extract chlorophyll, discover that plants “breathe”, recreate the experiments of Priestly and Ingenhousz, detect carbon dioxide production, and measure the rate of yeast respiration. None of these experiments require expensive equipment such as metabolism chambers or oxygen meters although those are great tools if you can afford them.

Assessment - Life on Mars

Mars Exploration Rovers: This special-effects image combines a model of the Mars rover Opportunity and 46 photogrpahs that Opportunity took of "Burns cliffs" near the edge of "Endurance Crater". Image courtesy of NASA/JPL-Caltech/Cornell.Mars Exploration Rovers: This special-effects image combines a model of the Mars rover Opportunity and 46 photogrpahs that Opportunity took of "Burns cliffs" near the edge of "Endurance Crater". Image courtesy of NASA/JPL-Caltech/Cornell.

Summary
In the summer of 2003, NASA’s Jet Propulsion Laboratory launched two Mars Exploration Rovers - Spirit and Opportunity - towards Mars. They landed on January 3rd and 4th, 2004. Their primary scientific goal was to study the geology of Mars and search for signs of water. Although they were expected to last only 3 months, they have been vigorously sending back data for over 2 years and are still going strong! In this activity, students receive simulated Martian soils and are given the task of designing 3 tests to determine whether the soil sample contains something alive or something that was once alive. They may use any of the tools from the previous lessons – agar plates, tests for organic molecules, microscopes, or something of their own design. This assignment allows students an opportunity to demonstrate what they have learned throughout the unit, both about scientific experimentation and about the special characteristics of living things.

Objectives
Can describe the necessary characteristics of life.
Can categorize objects as alive or not alive using self-generated data.
Can demonstrate that all living things will grow and reproduce when provided with the proper nutrients and environmental conditions.
Can demonstrate that living things are made of organic molecules.
Can test for the presence of protein, glucose and starch.
Can design an experiment.
Can make observations and keep track of data over several days.
Can interpret the results of an experiment.

Vocabulary
Characteristic
Agar
Nutrients
Yeast
Organic molecule
Protein
Biuret solution
Carbohydrates
Glucose
Benedict’s solution
Starch
Iodine
Microscope

3. Testing for Life's Molecules

Summary
All known life is made out of a small group of chemical compounds called organic molecules. Common organic molecules include proteins, glucose, starch, lipids, and nucleic acids. This lesson plan asks students to conduct tests for proteins, glucose, and starch. At the beginning of the activity, they choose 3 items to test: one known to be “never alive”, one known to be “once was alive”, and one mystery item. In addition, each station includes a positive control. By the end of the experiment, students should be familiar with some of the major organic molecules and should recognize that living things, and substances derived from them, are made of organic molecules. In addition, this is a chance to bring in topic surrounding nutrition, health, and digestion. Since our bodies are made up of organic molecules, we need each of these molecules as nutrients in our food.

2. Life Traps

Summary
Life trapsLife trapsAs part of recognizing the characteristics of life that all organisms share, students grow microbes on nutrient agar plates. Students swipe surfaces with a sterile Q tip swab and seed plates resulting in a wide range of colorful and prolific bacteria and fungi colonies. Other plates may be simply opened to the air to catch life floating in the air. Through these experiences, students learn that all living things, even those so small and invisible as to be floating in the air, grow and reproduce when provided with the proper nutrients and water. Teachable moments abound since the “dirtiest places”, like the toilet rim, often result in the least bacterial growth while presumably “clean” places, like the surface of your skin, have the most. A fun extension of this activity (see the Going Further section) is to start a sourdough culture from wild yeast in the air and make sourdough bread.

Sub Plan - DNA Jewelry

Summary
Students create DNA models from beads and wire that may be used as earrings, pendants, Christmas ornaments, and/or key chain pulls. This project is simple enough that a good substitute could lead the students through it since the content should be taught beforehand. More importantly, this is just one of many possible 3D DNA models you could have your students build. Be creative! Use gumdrops, Styrofoam, marshmallows, Legos, grapes, wood, aluminum cans, etc. Better yet, have your students design a model independently.