5. From Maps to Models

Most middle school students have not seen or used topographic maps before. Conceptually, it is difficult for kids to see how a 2 dimensional topo map represents elevation. In this activity, students learn how to create and read topo maps. By the end of the activity, they should be able to read a topo map and identify simple geographical features from a map. Teams of students mold a landform out of clay then place it into a clear plastic container. Water is added to the container in 1 cm intervals and students trace the “shoreline” of their model onto a transparency placed on the box lid. The resulting topo map is traded with another group who is then challenged to turn the 2 dimensional map back into a 3 dimensional landform. Several options are provided for creating the final model based on the materials available to the class. In fact, having more than one option of how to create the model often leads to greater understanding of how topo maps represent elevation.

Field Trip - Bay Model

This section will give you information to help you plan a field trip to the San Francisco Bay Model. The Bay Model is a working three-dimensional model of the San Francisco Bay and Delta areas. It fills 3 warehouse sized buildings and students who visit get a guided tour, observing the flow of the water, learning about how scientists use scale models, and leaving with the impression that the Bay is a very big place.

Field Trip - Save the Bay

This section will give you information to help you plan a field trip with Save the Bay. I brought 32 students to Arrowhead Marsh, a hidden wetland near the Oakland Airport, to meet up with extraordinary Save the Bay Instructors. The day was divided into two parts: 1) Canoeing – where we did water quality monitoring, explored the marsh with all our senses, and went on a wildlife scavenger hunt 2) Restoration – where we repotted 300 native plants, cleaned up the shoreline, and went for a walk on a boardwalk above the marsh. Students were able to explore a wetland up close and observe a leopard shark, feel the Bay’s muddy bottom, and listen to the endangered snowy plover.

Sub Plan - Bay Classroom Webquest

Students go on a web-quest for information on Save the Bay’s Bay Classroom website. They discover facts and information about the part of the San Francisco Bay, its history, the creatures that call it home, and ways they can help protect the bay. This easy activity requires little supervision and is thus offered as a great substitute teacher lesson plan or for one of those teaching days when you need a last minute lesson. Suggestions for making this lesson more interactive are provided.

4. San Francisco Bay Watershed


Students get an introduction to the San Francisco Bay watershed by studying a map of California. The concept of a watershed is solidified using the San Francisco Bay watershed as an example. Major geographical landmarks are identified on the map. Students then turn their hands into a portable map of the watershed. They discover how the water cycle determines the flows of water in different seasons, and therefore determines the utility of dams and reservoirs to even out the flow. In the process, students learn about the reasons the Bay is so important to California’s people, economy, and wildlife. This lesson may be extended into a history of the San Francisco Bay lesson.

Can feel a sense of place and connectedness to other parts of the state.
Can identify the major landmarks in the San Francisco Bay watershed.
Can see similarities between very large watersheds (on a statewide level) and very small ones (on a neighborhood level).

3. Katrina Case Study

Through a demonstration, students learn about the balance between subsidence and flooding in the formation of a wetland. Students then watch a short 15 minute PBS video about the wetlands of Louisiana. They will discover how levee building and the subsequent loss of wetlands contributed to the severity of Hurricane Katrina’s effect on the city of New Orleans. Finally, the class holds a discussion geared towards environmental stewardship and habitat restoration.

Can explain how subsidence and flooding contribute to the maintenance of wetlands.
Can explain how levees prevent flooding and exacerbate subsidence.
Can explain how wetlands protect shoreline from natural disasters such as hurricanes and flooding.
Hurricane Katrina Can discuss the goals of habitat restoration.
Can recognize the importance of environmental stewardship.

Soil compaction
Habitat restoration
Environmental stewardship

2. Watersheds and Wetlands

Wetlands book: First page of a 6th grade student's book on wetlands, written and shared with the 4th grade class.Wetlands book: First page of a 6th grade student's book on wetlands, written and shared with the 4th grade class. Cardstock paper, water spray bottles, markers and sponges are turned into models of wetlands and watersheds in this simple activity. Students follow the path of the water (and urban runoff) to a bay and develop an initial understanding of what watersheds are. Then some students add sponges to the borders of their bay to simulate wetlands and compare watersheds with wetlands to those without. Students extrapolate the role of watersheds as reservoirs in times of drought, as sponges in times of flood, and as filters for pollution. Finally, students compare watersheds with wetlands to those without after a “toxic chemical spill” (Koolaid drink mix) to see the effects of pollution throughout the watershed as well as to discover the role of wetlands in reducing the harm of severe pollutants to a bay. This series of activities is an excellent prelude for a wetlands restoration field trip (see the Save the Bay field trip planning guide) so that after learning what wetlands are, they can explore and restore a wetland area firsthand. Another extension and application of these ideas might be an exploration of the students’ own watershed, the effects of urban runoff and watershed protection.

1. Water Cycle Stories

In this lesson, students review the water cycle (a concept most have hopefully explored before in elementary school science) and write stories to describe the journey of a water molecule through the water cycle. They begin by labeling a drawing of the water cycle, noting the locations that water may be stored on the planet and the processes through which water travels from one location to another. They then envision several journeys as a class before writing a story to describe the journey of a water molecule through the water cycle. An optional mini-investigation to complement this lesson involves observing the transition of water through its 3 phases (ice, water, water vapor) after an ice cube is zipped into a resealable plastic bag and taped to a sunny window.

Assessment - Rotten Log Lab (with Termites!)

This is an alternative assessment activity in which students pull apart a rotting log as an example of a microhabitat that can be explored in the classroom. As they dissect the log and discover the myriad of bizarre creatures on and inside the log, the notes the students keep can be used as an assessment of many of the major concepts in this unit. Another use for this lab is as an engaging way introduce a very special organism-organism relationship, symbiosis. Termites have a symbiotic relationship with the protozoa in their gut. The protozoa that digest the cellulose in the wood for the termites, can be extracted from the termites’ gut and observed under a microscope. One of my students who witnessed the extraction and then saw the protozoa proclaimed “That was the coolest thing I have ever seen. Ever.” Finally, if you are just fascinated by termites and want to become completely enamoured, try putting a termite on a line drawn by a Bic pen…

Project - Ecosystem Plan

At the end of the unit, students can now apply their understanding of ecosystems, food webs, resource management, native vs. nonnative species, and human environmental impact to a real world situation. Individuals involved in habitat restoration routinely research and select plants and animals to include in a redesigned ecosystem. In this final project, students will create posters with a minimum of 8 native plants and 5 native animals that should be included in the redesign of the habitat they surveyed previously. They will look at how these organisms will interact and discuss how to sustain the ecosystem into the future. If it is possible to do a long term habitat restoration near your school, this is an excellent exercise to get the students personally invested in the restoration work because they played a role in selecting the species they will reintroduce.