9-12

Exploratorium Box

This megabox contains teaching boxes created by the fabulous teachers of the Exploratorium Teachers Institute. What is a teaching box? It generally takes the form of a cardboard box in a science teacher's classroom or garage. Inside you will find the collected materials, lesson plans, background information and ideas needed to teach a set of lessons on a certain topic.


8. Dinosaur Extinction Theories

Summary

Cartoon by Chris Madden

Ark cartoon - Chris MaddenWhat caused the extinction of the dinosaurs? Was it a massive meteor? Was it the result of tremendous volcanic activity that covered the globe in volcanic ash? Was it the effects of gradual climate change? Was it the result of plate tectonics? Students are given a set of evidence cards that state scientific discoveries about rocks from 65 million years ago and prediction cards that discuss the predicted effects of different events such as a meteor impact, a rise in carbon dioxide levels, and plate tectonics. Teams of students are charged with assembling this information into an overarching theory that best explains the evidence at hand. At the end of the period or the following period, teams present their theories to the whole group and enter into a debate about the cause or causes of the great dinosaur extinction.
 

Objectives
Can sort through evidence and come up with a scientific theory that best fits the data.
Can recognize whether evidence is consistent with a scientific theory.
Can use geologic evidence to propose theories about past life on earth.


Field Trip - Caldecott Tunnel

Summary
To apply students’ understanding of the rock cycle and basic principles of stratigraphy, I brought my students to the Caldecott Tunnel to investigate the local geology and piece together the geologic history of their backyard. The east side of the tunnel has an easily accessed road cut that displays a gorgeous example of a contact between older sedimentary rock layers and a more recent volcanic layer. The whole thing has been folded and faulted by the actions of the Hayward Fault, and thus the layers are no longer horizontal but at a sharp diagonal. My students drew pictures of the northern cliff face on the Orinda side of the tunnel then each student was assigned a rock layer to study in detail. When we got back to the classroom, we reassembled the data on the whiteboard, and made theories about the sequence of events that would bring about the rock layers we observed in the cliff. Finally, students drew pictures of what the area must have looked like at different parts of the timeline. This field trip led gracefully into the next segment of the unit on geologic time.

Caldecott Tunnel - north roadcut
Photograph of the northern roadcut face at the Caldecott Tunnel from the field trip “Caldecott Tunnel between Oakland and Orinda” by Russell W. Graymer in "The Geology and Natural History of the San Francisco Bay Area: A Field-Trip Guidebook", edited by Philip W. Stoffer and Leslie C. Gordon.

 


Project - Terraqua Column Experiment

Summary
Once students have some experience working with a basic terraqua column (see the Terraqua Columns Lesson), they have an opportunity to design and conduct their own investigations with their mini-ecosystems. There are hundreds of variables students can manipulate with a minimum of materials – temperature, light, pollution, type of water, type of soil, etc. As a class, students brainstorm variables that might affect the plants, soil, and/or water in a terraqua column. In teams, students propose a project, and once approved, set about testing their ideas and observing the effects of their manipulations on their mini-ecosystem. If your school participates in a local science fair, this is a fantastic activity to introduce students to experimental design, variables, and control groups.


Project - Sediment Study

Summary
In this culminating project, students go out into the field and test their theories about erosion and sedimentation at a local creek. How are sediments distributed along the creek? Does it vary by location (the source, mid-stream, and the mouth)? Does it vary by the velocity of the current? Different classes can collect information for the different study areas. At a study site, they will draw maps, measure the velocity of the current, and collect sediment samples from the creek bed. These samples are analysed back in the classroom for the percent of different sediments they contain. Finally, students stand back and examine their data to try to make sense of the sediments they find. If it is not possible to bring students to a creek, there are many ways to bring the data to them. Collect the sediment samples yourself with photos and water velocity information OR use the Suspended Sediment Database to draw your conclusions. This USGS database provides stream flow and sediment information for over 1,500 rivers and creeks nationwide (see the Going Further section for more information on using the USGS’s database).


Assessment - Rotten Log Lab (with Termites!)

Summary
This is an alternative assessment activity in which students pull apart a rotting log as an example of a microhabitat that can be explored in the classroom. As they dissect the log and discover the myriad of bizarre creatures on and inside the log, the notes the students keep can be used as an assessment of many of the major concepts in this unit. Another use for this lab is as an engaging way introduce a very special organism-organism relationship, symbiosis. Termites have a symbiotic relationship with the protozoa in their gut. The protozoa that digest the cellulose in the wood for the termites, can be extracted from the termites’ gut and observed under a microscope. One of my students who witnessed the extraction and then saw the protozoa proclaimed “That was the coolest thing I have ever seen. Ever.” Finally, if you are just fascinated by termites and want to become completely enamoured, try putting a termite on a line drawn by a Bic pen…


Project - Ecosystem Plan

Summary
At the end of the unit, students can now apply their understanding of ecosystems, food webs, resource management, native vs. nonnative species, and human environmental impact to a real world situation. Individuals involved in habitat restoration routinely research and select plants and animals to include in a redesigned ecosystem. In this final project, students will create posters with a minimum of 8 native plants and 5 native animals that should be included in the redesign of the habitat they surveyed previously. They will look at how these organisms will interact and discuss how to sustain the ecosystem into the future. If it is possible to do a long term habitat restoration near your school, this is an excellent exercise to get the students personally invested in the restoration work because they played a role in selecting the species they will reintroduce.


10. Gone Fishin'

Summary
The management of the world’s fisheries is a controversial current issue that involves individuals from many different viewpoints – fishermen and women, environmentalists, park rangers, politicians, and shoppers at the seafood counter. The issue is that many of the world’s fisheries are overfished and have collapsed or are on the verge of collapse. This is but one example of the tragedy of the commons – where a limited common resource is overused because each individual person thinks, “If I don’t use this resource first, then somebody else will.” Students in this activity act as fishermen and women who need to share an ocean of fish and take in a catch. Groups soon realize that if they don’t set fishing limits and monitor the fish population, soon there are no fish left in the ocean.


9. Hare and Lynx Populations

Summary
Once students understand the concept of populations, it is important to introduce the idea of population change. There are many reasons for population change – limited resources, predator-prey cycles, human impact, habitat change – to name but a few. In this activity, students learn to graph population data and then use their graphs to evaluate one of the most famous examples of population change, the predator-prey population cycle of the snowshoe hare and the Canada lynx. The data is taken from the 300 years worth of real data collected by trappers of the Hudson Bay Company. This activity provides students a chance to look at real data and make some hypotheses about what causes population change in the real world. The Going Further section is more extensive than for other lesson plans on this site and refers teachers to many excellent population change activities that can be found in other curriculum guides.


7. Habitat Survey

Summary

In this activity, students finally get to apply their skills of soil analysis and observation to a 1 meter by 1 meter area of the schoolyard, restoration site, or creek bank. Teams of students get down and dirty exploring the soil, vegetation, and insect life in their microhabitat. Students practice using the soil analysis tools they learned previously and also practice using field guides to identify plants and insects. Upon returning to the classroom, they compare their results with other groups to see the differences and similarities between their microhabitats. This is a superb activity to use before and after a habitat restoration project or simply to track changes in a habitat throughout the year. I used this investigation to introduce the idea of native vs. non-native species and to begin a debate about invasive species. My students really “got it” when they examined our adopted restoration area and discovered that there was a monoculture of invasive, non-native English ivy all across our site. They visited our adopted site 3-4 times throughout the year pulling ivy and planting native plants. When all was said and done, they repeated this investigation in the spring to discover exactly the magnitude of the change they made on the environment – and to find that the native plants recruited a wider variety of insects than they had seen at that site in the fall.