Grade level
Summary
Wetlands book: First page of a 6th grade student's book on wetlands, written and shared with the 4th grade class. Cardstock paper, water spray bottles, markers and sponges are turned into models of wetlands and watersheds in this simple activity. Students follow the path of the water (and urban runoff) to a bay and develop an initial understanding of what watersheds are. Then some students add sponges to the borders of their bay to simulate wetlands and compare watersheds with wetlands to those without. Students extrapolate the role of watersheds as reservoirs in times of drought, as sponges in times of flood, and as filters for pollution. Finally, students compare watersheds with wetlands to those without after a “toxic chemical spill” (Koolaid drink mix) to see the effects of pollution throughout the watershed as well as to discover the role of wetlands in reducing the harm of severe pollutants to a bay. This series of activities is an excellent prelude for a wetlands restoration field trip (see the Save the Bay field trip planning guide) so that after learning what wetlands are, they can explore and restore a wetland area firsthand. Another extension and application of these ideas might be an exploration of the students’ own watershed, the effects of urban runoff and watershed protection.
Submitted by irene on Sat, 2005-11-19 20:41.
Summary
In this lesson, students review the water cycle (a concept most have hopefully explored before in elementary school science) and write stories to describe the journey of a water molecule through the water cycle. They begin by labeling a drawing of the water cycle, noting the locations that water may be stored on the planet and the processes through which water travels from one location to another. They then envision several journeys as a class before writing a story to describe the journey of a water molecule through the water cycle. An optional mini-investigation to complement this lesson involves observing the transition of water through its 3 phases (ice, water, water vapor) after an ice cube is zipped into a resealable plastic bag and taped to a sunny window.
Submitted by irene on Sun, 2005-11-06 14:26.
Summary
This is an alternative assessment activity in which students pull apart a rotting log as an example of a microhabitat that can be explored in the classroom. As they dissect the log and discover the myriad of bizarre creatures on and inside the log, the notes the students keep can be used as an assessment of many of the major concepts in this unit. Another use for this lab is as an engaging way introduce a very special organism-organism relationship, symbiosis. Termites have a symbiotic relationship with the protozoa in their gut. The protozoa that digest the cellulose in the wood for the termites, can be extracted from the termites’ gut and observed under a microscope. One of my students who witnessed the extraction and then saw the protozoa proclaimed “That was the coolest thing I have ever seen. Ever.” Finally, if you are just fascinated by termites and want to become completely enamoured, try putting a termite on a line drawn by a Bic pen…
Submitted by irene on Sun, 2005-10-23 22:03.
Summary
At the end of the unit, students can now apply their understanding of ecosystems, food webs, resource management, native vs. nonnative species, and human environmental impact to a real world situation. Individuals involved in habitat restoration routinely research and select plants and animals to include in a redesigned ecosystem. In this final project, students will create posters with a minimum of 8 native plants and 5 native animals that should be included in the redesign of the habitat they surveyed previously. They will look at how these organisms will interact and discuss how to sustain the ecosystem into the future. If it is possible to do a long term habitat restoration near your school, this is an excellent exercise to get the students personally invested in the restoration work because they played a role in selecting the species they will reintroduce.
Submitted by irene on Sun, 2005-10-23 20:02.
Summary
The management of the world’s fisheries is a controversial current issue that involves individuals from many different viewpoints – fishermen and women, environmentalists, park rangers, politicians, and shoppers at the seafood counter. The issue is that many of the world’s fisheries are overfished and have collapsed or are on the verge of collapse. This is but one example of the tragedy of the commons – where a limited common resource is overused because each individual person thinks, “If I don’t use this resource first, then somebody else will.” Students in this activity act as fishermen and women who need to share an ocean of fish and take in a catch. Groups soon realize that if they don’t set fishing limits and monitor the fish population, soon there are no fish left in the ocean.
Submitted by irene on Sun, 2005-10-23 12:18.
Summary
Once students understand the concept of populations, it is important to introduce the idea of population change. There are many reasons for population change – limited resources, predator-prey cycles, human impact, habitat change – to name but a few. In this activity, students learn to graph population data and then use their graphs to evaluate one of the most famous examples of population change, the predator-prey population cycle of the snowshoe hare and the Canada lynx. The data is taken from the 300 years worth of real data collected by trappers of the Hudson Bay Company. This activity provides students a chance to look at real data and make some hypotheses about what causes population change in the real world. The Going Further section is more extensive than for other lesson plans on this site and refers teachers to many excellent population change activities that can be found in other curriculum guides.
Submitted by irene on Sat, 2005-10-22 13:39.
Summary
Ecosystem Pyramid student work The study of ecology has many layers, ranging from the individual organism, to the population, to the ecosystem, to the planet. It is important for students to know the levels within this hierarchy and to recognize which level they are focusing on at any one time. For the purposes of this activity, students will learn about the different levels (organism, population, community, ecosystem, biome, and biosphere) by choosing an organism and the illustrating a pyramid about that organism. The result is a colorful display of organizational pyramids.
Submitted by irene on Sat, 2005-10-22 09:29.
Summary
In this activity, students finally get to apply their skills of soil analysis and observation to a 1 meter by 1 meter area of the schoolyard, restoration site, or creek bank. Teams of students get down and dirty exploring the soil, vegetation, and insect life in their microhabitat. Students practice using the soil analysis tools they learned previously and also practice using field guides to identify plants and insects. Upon returning to the classroom, they compare their results with other groups to see the differences and similarities between their microhabitats. This is a superb activity to use before and after a habitat restoration project or simply to track changes in a habitat throughout the year. I used this investigation to introduce the idea of native vs. non-native species and to begin a debate about invasive species. My students really “got it” when they examined our adopted restoration area and discovered that there was a monoculture of invasive, non-native English ivy all across our site. They visited our adopted site 3-4 times throughout the year pulling ivy and planting native plants. When all was said and done, they repeated this investigation in the spring to discover exactly the magnitude of the change they made on the environment – and to find that the native plants recruited a wider variety of insects than they had seen at that site in the fall.
Submitted by irene on Wed, 2005-09-28 10:29.
Summary
In order to help understand the complexity of the issues surrounding protecting endangered species, students read an article about the Channel Island fox published in the Smithsonian magazine in October 2004. They create and use food webs to better understand the reasons for the foxes decline. This is a superb follow up to the Food Webs activity.
Submitted by irene on Sun, 2005-08-28 15:15.
Summary
This section will give you information to help you plan a field trip to Point Reyes National Seashore. My classes went to Point Reyes for an overnight camping trip between lessons 7 and 8. The first day, we went to the Bear Valley Visitor Center and did a ranger led program called Monitoring Creek Health. After creek monitoring, we played and hiked at Linmatour beach before retiring to our campsite. The following day, we took a kayaking tour of Tomales Bay. Our kayaking guides taught the students about the wildlife and geology of the area throughout the trip. The happy and exhausted students and teacher then made their way back to school.
Submitted by irene on Fri, 2005-08-26 16:03.
|